Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.

Identifieur interne : 000824 ( Main/Exploration ); précédent : 000823; suivant : 000825

Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.

Auteurs : Samantha D. Bouldin [États-Unis] ; Maxwell A. Darch ; P John Hart ; Caryn E. Outten

Source :

RBID : pubmed:22651090

Descripteurs français

English descriptors

Abstract

The intramolecular disulfide bond in hSOD1 [human SOD1 (Cu,Zn superoxide dismutase 1)] plays a key role in maintaining the protein's stability and quaternary structure. In mutant forms of SOD1 that cause familial ALS (amyotrophic lateral sclerosis), this disulfide bond is more susceptible to chemical reduction, which may lead to destabilization of the dimer and aggregation. During hSOD1 maturation, disulfide formation is catalysed by CCS1 (copper chaperone for SOD1). Previous studies in yeast demonstrate that the yeast GSH/Grx (glutaredoxin) redox system promotes reduction of the hSOD1 disulfide in the absence of CCS1. In the present study, we probe further the interaction between hSOD1, GSH and Grxs to provide mechanistic insight into the redox kinetics and thermodynamics of the hSOD1 disulfide. We demonstrate that hGrx1 (human Grx1) uses a monothiol mechanism to reduce the hSOD1 disulfide, and the GSH/hGrx1 system reduces ALS mutant SOD1 at a faster rate than WT (wild-type) hSOD1. However, redox potential measurements demonstrate that the thermodynamic stability of the disulfide is not consistently lower in ALS mutants compared with WT hSOD1. Furthermore, the presence of metal cofactors does not influence the disulfide redox potential. Overall, these studies suggest that differences in the GSH/hGrx1 reaction rate with WT compared with ALS mutant hSOD1 and not the inherent thermodynamic stability of the hSOD1 disulfide bond may contribute to the greater pathogenicity of ALS mutant hSOD1.

DOI: 10.1042/BJ20120075
PubMed: 22651090
PubMed Central: PMC3533437


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.</title>
<author>
<name sortKey="Bouldin, Samantha D" sort="Bouldin, Samantha D" uniqKey="Bouldin S" first="Samantha D" last="Bouldin">Samantha D. Bouldin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Darch, Maxwell A" sort="Darch, Maxwell A" uniqKey="Darch M" first="Maxwell A" last="Darch">Maxwell A. Darch</name>
</author>
<author>
<name sortKey="Hart, P John" sort="Hart, P John" uniqKey="Hart P" first="P John" last="Hart">P John Hart</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22651090</idno>
<idno type="pmid">22651090</idno>
<idno type="doi">10.1042/BJ20120075</idno>
<idno type="pmc">PMC3533437</idno>
<idno type="wicri:Area/Main/Corpus">000833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000833</idno>
<idno type="wicri:Area/Main/Curation">000833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000833</idno>
<idno type="wicri:Area/Main/Exploration">000833</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.</title>
<author>
<name sortKey="Bouldin, Samantha D" sort="Bouldin, Samantha D" uniqKey="Bouldin S" first="Samantha D" last="Bouldin">Samantha D. Bouldin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Darch, Maxwell A" sort="Darch, Maxwell A" uniqKey="Darch M" first="Maxwell A" last="Darch">Maxwell A. Darch</name>
</author>
<author>
<name sortKey="Hart, P John" sort="Hart, P John" uniqKey="Hart P" first="P John" last="Hart">P John Hart</name>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis (enzymology)</term>
<term>Amyotrophic Lateral Sclerosis (genetics)</term>
<term>Disulfides (chemistry)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Superoxide Dismutase (chemistry)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Superoxide Dismutase-1 (MeSH)</term>
<term>Thermodynamics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cinétique (MeSH)</term>
<term>Disulfures (composition chimique)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Sclérose latérale amyotrophique (enzymologie)</term>
<term>Sclérose latérale amyotrophique (génétique)</term>
<term>Superoxide dismutase (composition chimique)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Superoxide dismutase-1 (MeSH)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Disulfides</term>
<term>Glutaredoxins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Disulfures</term>
<term>Glutarédoxines</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Sclérose latérale amyotrophique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amyotrophic Lateral Sclerosis</term>
<term>Glutaredoxins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Sclérose latérale amyotrophique</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Kinetics</term>
<term>Mutation</term>
<term>Oxidation-Reduction</term>
<term>Superoxide Dismutase-1</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Humains</term>
<term>Mutation</term>
<term>Oxydoréduction</term>
<term>Superoxide dismutase-1</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intramolecular disulfide bond in hSOD1 [human SOD1 (Cu,Zn superoxide dismutase 1)] plays a key role in maintaining the protein's stability and quaternary structure. In mutant forms of SOD1 that cause familial ALS (amyotrophic lateral sclerosis), this disulfide bond is more susceptible to chemical reduction, which may lead to destabilization of the dimer and aggregation. During hSOD1 maturation, disulfide formation is catalysed by CCS1 (copper chaperone for SOD1). Previous studies in yeast demonstrate that the yeast GSH/Grx (glutaredoxin) redox system promotes reduction of the hSOD1 disulfide in the absence of CCS1. In the present study, we probe further the interaction between hSOD1, GSH and Grxs to provide mechanistic insight into the redox kinetics and thermodynamics of the hSOD1 disulfide. We demonstrate that hGrx1 (human Grx1) uses a monothiol mechanism to reduce the hSOD1 disulfide, and the GSH/hGrx1 system reduces ALS mutant SOD1 at a faster rate than WT (wild-type) hSOD1. However, redox potential measurements demonstrate that the thermodynamic stability of the disulfide is not consistently lower in ALS mutants compared with WT hSOD1. Furthermore, the presence of metal cofactors does not influence the disulfide redox potential. Overall, these studies suggest that differences in the GSH/hGrx1 reaction rate with WT compared with ALS mutant hSOD1 and not the inherent thermodynamic stability of the hSOD1 disulfide bond may contribute to the greater pathogenicity of ALS mutant hSOD1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22651090</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>446</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.</ArticleTitle>
<Pagination>
<MedlinePgn>59-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BJ20120075</ELocationID>
<Abstract>
<AbstractText>The intramolecular disulfide bond in hSOD1 [human SOD1 (Cu,Zn superoxide dismutase 1)] plays a key role in maintaining the protein's stability and quaternary structure. In mutant forms of SOD1 that cause familial ALS (amyotrophic lateral sclerosis), this disulfide bond is more susceptible to chemical reduction, which may lead to destabilization of the dimer and aggregation. During hSOD1 maturation, disulfide formation is catalysed by CCS1 (copper chaperone for SOD1). Previous studies in yeast demonstrate that the yeast GSH/Grx (glutaredoxin) redox system promotes reduction of the hSOD1 disulfide in the absence of CCS1. In the present study, we probe further the interaction between hSOD1, GSH and Grxs to provide mechanistic insight into the redox kinetics and thermodynamics of the hSOD1 disulfide. We demonstrate that hGrx1 (human Grx1) uses a monothiol mechanism to reduce the hSOD1 disulfide, and the GSH/hGrx1 system reduces ALS mutant SOD1 at a faster rate than WT (wild-type) hSOD1. However, redox potential measurements demonstrate that the thermodynamic stability of the disulfide is not consistently lower in ALS mutants compared with WT hSOD1. Furthermore, the presence of metal cofactors does not influence the disulfide redox potential. Overall, these studies suggest that differences in the GSH/hGrx1 reaction rate with WT compared with ALS mutant hSOD1 and not the inherent thermodynamic stability of the hSOD1 disulfide bond may contribute to the greater pathogenicity of ALS mutant hSOD1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bouldin</LastName>
<ForeName>Samantha D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Darch</LastName>
<ForeName>Maxwell A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hart</LastName>
<ForeName>P John</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>I01 BX000506</GrantID>
<Acronym>BX</Acronym>
<Agency>BLRD VA</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22 ES013780</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM086619</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS039112</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000606290">SOD1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D000072105">Superoxide Dismutase-1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000690" MajorTopicYN="N">Amyotrophic Lateral Sclerosis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072105" MajorTopicYN="N">Superoxide Dismutase-1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22651090</ArticleId>
<ArticleId IdType="pii">BJ20120075</ArticleId>
<ArticleId IdType="doi">10.1042/BJ20120075</ArticleId>
<ArticleId IdType="pmc">PMC3533437</ArticleId>
<ArticleId IdType="mid">NIHMS399332</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2009 Oct 2;284(40):27746-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Nov 14;45(45):13409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17087494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7944-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Apr 6;32(13):3368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8461300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8292-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8058797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;252:283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7476363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12240-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8901564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Sep 19;272(38):23469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9295278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1997 Nov;69(5):1936-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 26;95(11):6361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9600970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Apr 30;398(2):320-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2009 Dec;492(1-2):40-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19800308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12571-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 20;276(16):12791-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Programs Biomed. 2001 Jun;65(3):191-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11339981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):38084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 21;278(8):5984-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12458194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 May 9;328(4):877-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12729761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Jun;10(6):461-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Aug 19;42(32):9543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12911296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Nov 1;12(21):2753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Nov 28;334(3):515-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14623191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 13;101(15):5518-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5976-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15056757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5964-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15069187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Jan 12;365(2):333-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17070542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Feb 7;26(3):855-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11263-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17592131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 21;282(38):28087-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17666395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Nov 2;373(4):877-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 11;283(2):866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(2):e1677</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18301754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 May 16;283(20):13528-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2008 Jun 15;17(12):1728-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2008 Nov 1;17(21):3303-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 24;283(43):29126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 15;284(20):13940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 14;284(33):21863-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Sep 11;284(37):24679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19586921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1140-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19596823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47998-8003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15893-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 24;279(52):54558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):17266-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15691826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16020530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 19;280(33):29771-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Dec 16;280(50):41373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16234242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jan 27;281(4):2333-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2006 Feb;129(Pt 2):451-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7148-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16636275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):847-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Jul;1763(7):747-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28648-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jul 21;23(14):2872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215895</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Darch, Maxwell A" sort="Darch, Maxwell A" uniqKey="Darch M" first="Maxwell A" last="Darch">Maxwell A. Darch</name>
<name sortKey="Hart, P John" sort="Hart, P John" uniqKey="Hart P" first="P John" last="Hart">P John Hart</name>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Bouldin, Samantha D" sort="Bouldin, Samantha D" uniqKey="Bouldin S" first="Samantha D" last="Bouldin">Samantha D. Bouldin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000824 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000824 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22651090
   |texte=   Redox properties of the disulfide bond of human Cu,Zn superoxide dismutase and the effects of human glutaredoxin 1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22651090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020